RegisteredAndEducated
New member
I'm not sure what section this should go in... but here ya go.
http://www.fastcompany.com/magazine/132/brilliant.html
http://www.fastcompany.com/magazine/132/brilliant.html
I'm standing next to a Croatian-born American genius in a half-empty office in Watertown, Massachusetts, and I'm about to be fried to a crisp. Or I'm about to witness the greatest advance in electrical science in a hundred years. Maybe both.
Either way, all I can think of is my electrician, Billy Sullivan. Sullivan has 11 tattoos and a voice marinated in Jack Daniels. During my recent home renovation, he roared at me when I got too close to his open electrical panel: "I'm the Juice Man!" he shouted. "Stay the **** away from my juice!"
He was right. Only gods mess with electrons. Only a fool would shoot them into the air. And yet, I'm in a conference room with a scientist who is going to let 120 volts fly out of the wall, on purpose.
"Don't worry," says the MIT assistant professor and a 2008 MacArthur genius-grant winner, Marin Soljacic (pronounced SOLE-ya-cheech), who designed the box he's about to turn on. "You will be okay."
We both shift our gaze to an unplugged Toshiba television set sitting 5 feet away on a folding table. He's got to be kidding: There is no power cord attached to it. It's off. Dark. Silent. "You ready?" he asks.
If Soljacic is correct -- if his free-range electrons can power up this untethered TV from across a room -- he will have performed a feat of physics so subtle and so profound it could change the world. It could also make him a billionaire. I hold my breath and cover my crotch. Soljacic flips the switch.
Soljacic isn't the first man to try to power distant electronic devices by sending electrons through the air. He isn't even the first man from the Balkans to try. Most agree that Serbian inventor Nikola Tesla, who went on to father many of the inventions that define the modern electronic era, was the first to let electrons off their leash, in 1890.
Tesla based his wireless electricity idea on a concept known as electromagnetic induction, which was discovered by Michael Faraday in 1831 and holds that electric current flowing through one wire can induce current to flow in another wire, nearby. To illustrate that principle, Tesla built two huge "World Power" towers that would broadcast current into the American air, to be received remotely by electrical devices around the globe.
Few believed it could work. And to be fair to the doubters, it didn't, exactly. When Tesla first switched on his 200-foot-tall, 1,000,000-volt Colorado Springs tower, 130-foot-long bolts of electricity shot out of it, sparks leaped up at the toes of passersby, and the grass around the lab glowed blue. It was too much, too soon.
But strap on your rubber boots; Tesla's dream has come true. After more than 100 years of dashed hopes, several companies are coming to market with technologies that can safely transmit power through the air -- a breakthrough that portends the literal and figurative untethering of our electronic age. Until this development, after all, the phrase "mobile electronics" has been a lie: How portable is your laptop if it has to feed every four hours, like an embryo, through a cord? How mobile is your phone if it shuts down after too long away from a plug? And how flexible is your business if your production area can't shift because you can't move the ceiling lights?
The world is about to be cured of its attachment disorder.
WIRELESS JUICE: A PRIMER
TECH 1: Inductive Coupling
Availability: April
>> THE FIRST WIRELESS POWERING SYSTEM to market is an inductive device, much like the one Tesla saw in his dreams, but a lot smaller. It looks like a mouse pad and can send power through the air, over a distance of up to a few inches. A powered coil inside that pad creates a magnetic field, which as Faraday predicted, induces current to flow through a small secondary coil that's built into any portable device, such as a flashlight, a phone, or a BlackBerry. The electrical current that then flows in that secondary coil charges the device's onboard rechargeable battery. (That iPhone in your pocket has yet to be outfitted with this tiny coil, but, as we'll see, a number of companies are about to introduce products that are.)
The practical benefit of this approach is huge. You can drop any number of devices on the charging pad, and they will recharge -- wirelessly. No more tangle of power cables or jumble of charging stations. What's more, because you are invisible to the magnetic fields created by the system, no electricity will flow into you if you stray between device and pad. Nor are there any exposed "hot" metal connections. And the pads are smart: Their built-in coils are driven by integrated circuits, which know if the device sitting on them is authorized to receive power, or if it needs power at all. So you won't charge your car keys. Or overcharge your flashlight.
The dominant player in this technology for the moment seems to be Michigan-based Fulton Innovation, which unveiled its first set of wirelessly charged consumer products at the Consumer Electronics Show early this year. Come April, Fulton's new pad-based eCoupled system will be available to police, fire-and-rescue, and contractor fleets -- an initial market of as many as 700,000 vehicles annually. The system is being integrated into a truck console designed and produced by Leggett & Platt, a $4.3 billion commercial shelving giant; it allows users to charge anything from a compatible rechargeable flashlight to a PDA. The tools and other devices now in the pipeline at companies such as Bosch, Energizer, and others will look just like their conventional ancestors. Companies such as Philips Electronics, Olympus, and Logitech will create a standard for products, from flashlights to drills to cell phones to TV remotes, by the end of this year.
TECH 2: Radio-frequency Harvesting
Availability: April
>> THE INDUCTION SYSTEMS are only the beginning. Some of the most visually arresting examples of wireless electricity are based on what's known as radio frequency, or RF. While less efficient, they work across distances of up to 85 feet. In these systems, electricity is transformed into radio waves, which are transmitted across a room, then received by so-called power harvesters and translated back into low-voltage direct current. Imagine smoke detectors or clocks that never need their batteries replaced. Sound trivial? Consider: Last November, to save on labor costs, General Motors canceled the regularly scheduled battery replacement in the 562 wall clocks at its Milford Proving Ground headquarters. This technology is already being used by the Department of Defense. This year, it will be available to consumers in the form of a few small appliances and wireless sensors; down the road, it will appear in wireless boxes into which you can toss any and all of your electronics for recharging.